

Sustainability in the Pet Food Industry: Turning Waste into Premium Pet Food Ingredients

Nantawan Therdthai

Department of Product Development, Faculty of Agro-Industry, Kasetsart University,
Bangkok 10900, Thailand

pd@ku.ac.th

What are Potential Wastes?

Rice Husk and Straw:

High in fiber, these can aid in digestion and serve as a filler in pet food formulations

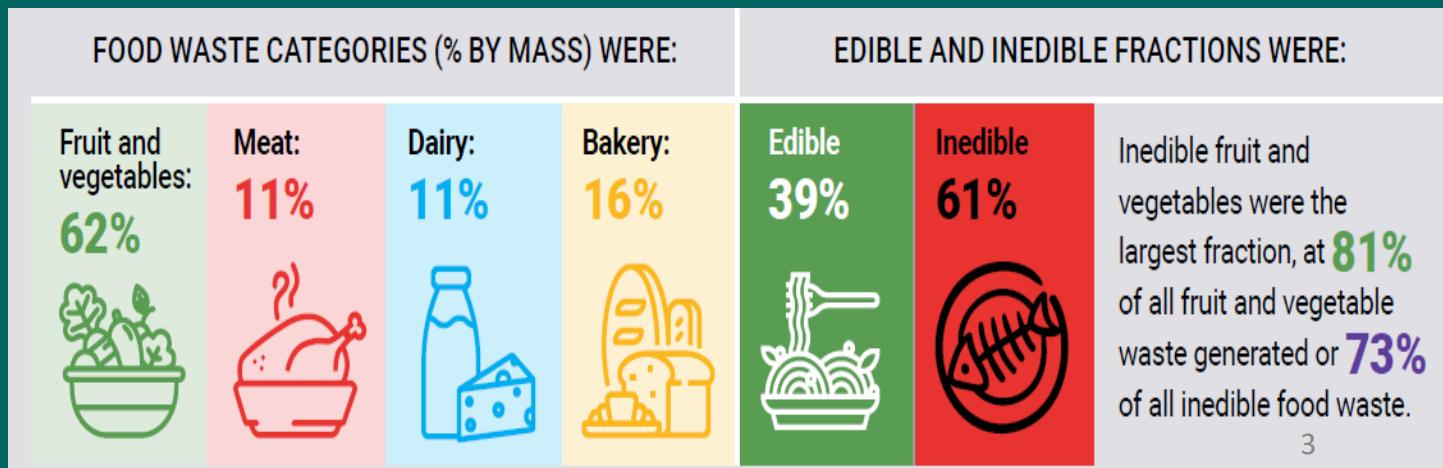
Sugarcane Bagasse:

Rich in organic matter, it can improve soil health and potentially be processed into pet food ingredients.

Cassava Waste:

Including peels and pulp, these are rich in carbohydrates and can be used as energy sources in pet diets

What are Potential Wastes?



Tuna waste

Waste includes fish bones and offal. These can be processed into pet food ingredients, such as broths or meals, enhancing protein content and palatability.

Okara (Soy Pulp)

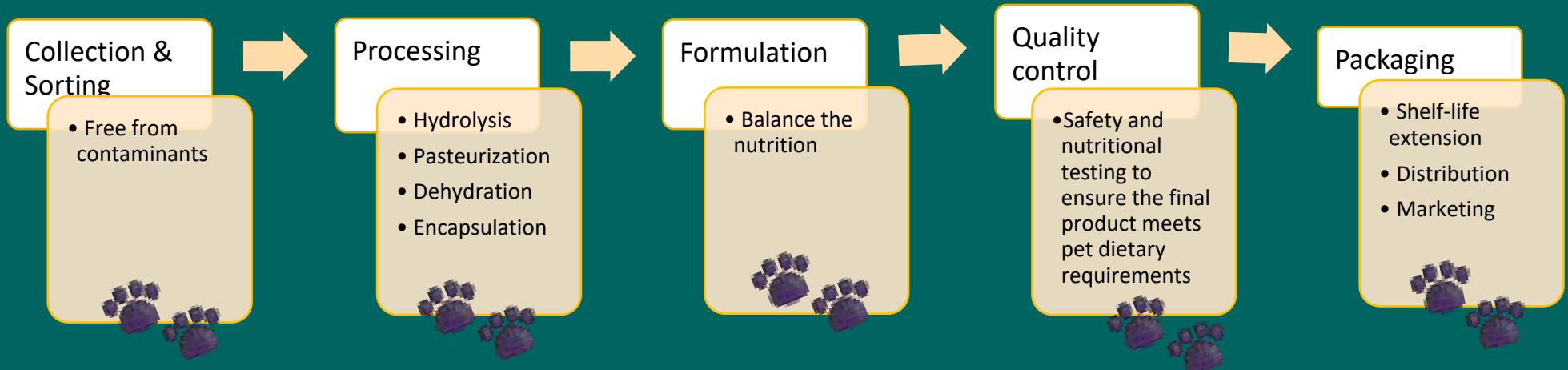
Okara is a byproduct of soy milk and tofu production. Rich in protein and fiber, it is commonly used as animal feed and has potential as an ingredient in pet food.

What are Potential Wastes?

Waste	Source	Benefits
Dried poultry/pig blood	Sourced from slaughterhouses	Very high in protein (>80%), highly palatable
Ground bones / rendered fat	By-product of meat cutting	Good source of calcium and energy
Liver, heart, lungs (organ meat)	Edible organs not used for human food	Rich in vitamin B12, iron, and minerals
Fish heads and bones	From fish processing plants	High in protein, calcium, and omega-3
Ground shrimp shells and heads	From shrimp processing	Source of collagen and chitin (immune-boosting)
Fermented cassava pulp	By-product from tapioca industry	High energy content (must ensure cyanide safety)
Rice bran, broken rice	From rice milling	High in energy, fiber, Vitamin-B
Soybean/green pea/pigeon pea meal	After oil extraction or food processing	Excellent plant-based protein
Brewer's spent grain	From beer production (malted barley residues)	High in protein and fiber; suitable for dogs
Stale bread / rejected biscuits	Bakery waste	Good energy source after drying and processing
Carrot/apple/pumpkin pomace	From juice or food factories	High in fiber, beta-carotene, prebiotics

OBJECTIVE

- To encourage the transformation of waste into pet food for sustainability


Pet owners are interested in sustainable pet food, driven by growing awareness of environmental issues.

37% of Thai pet owners are trying to give their pet a diet that is better for the environment (eg. plant-based).

Transforming Waste into Opportunity

Steps in the Conversion Process

Sustainability has been defined as....

“Ability to produce pet food in adequate amounts while providing sufficient essential nutrients required to maintain optimum health and viability now and in the future, with the smallest environmental footprint.”

Pasteurization/ Sterilization

Thermal processing for microbial inhibition and preventing contamination

Temperature not more than 100°C

Hot water
Steam
Hot air

Pasteurization

Temperature above 100°C

Hot water
Steam
Combination

Sterilization

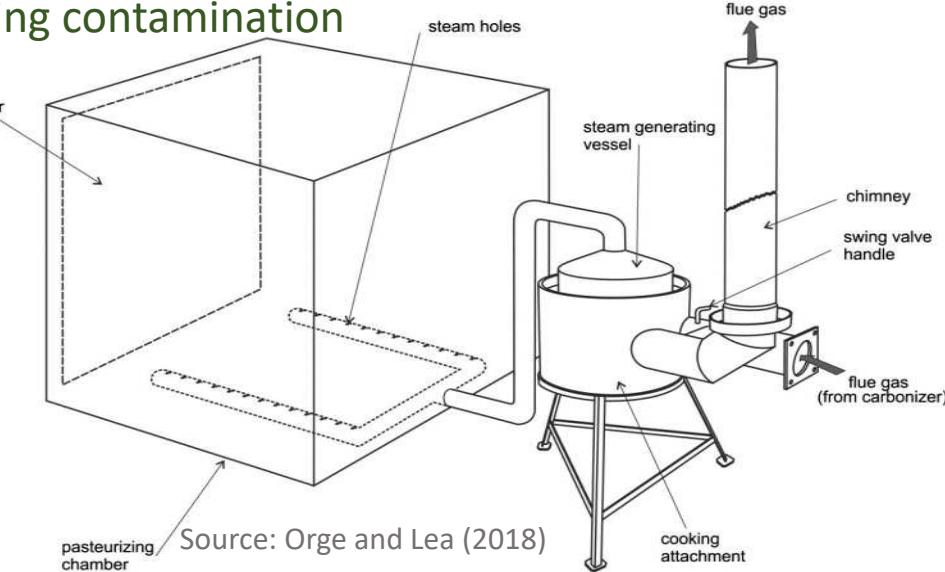
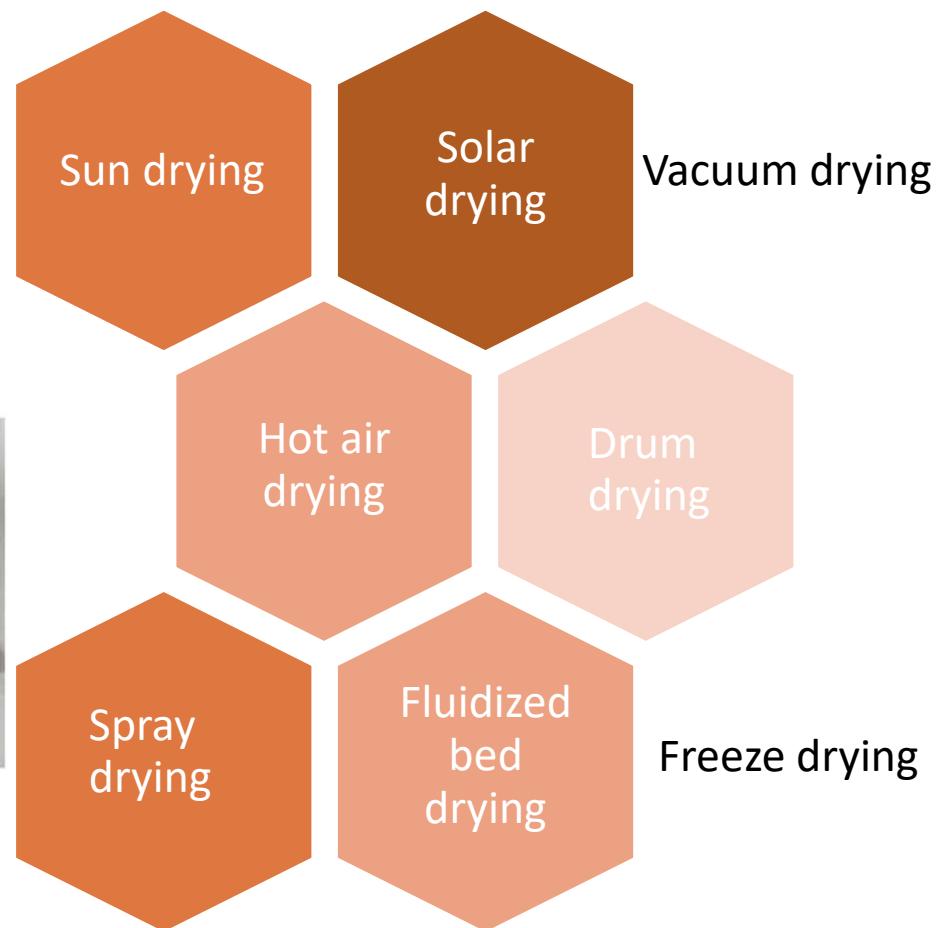
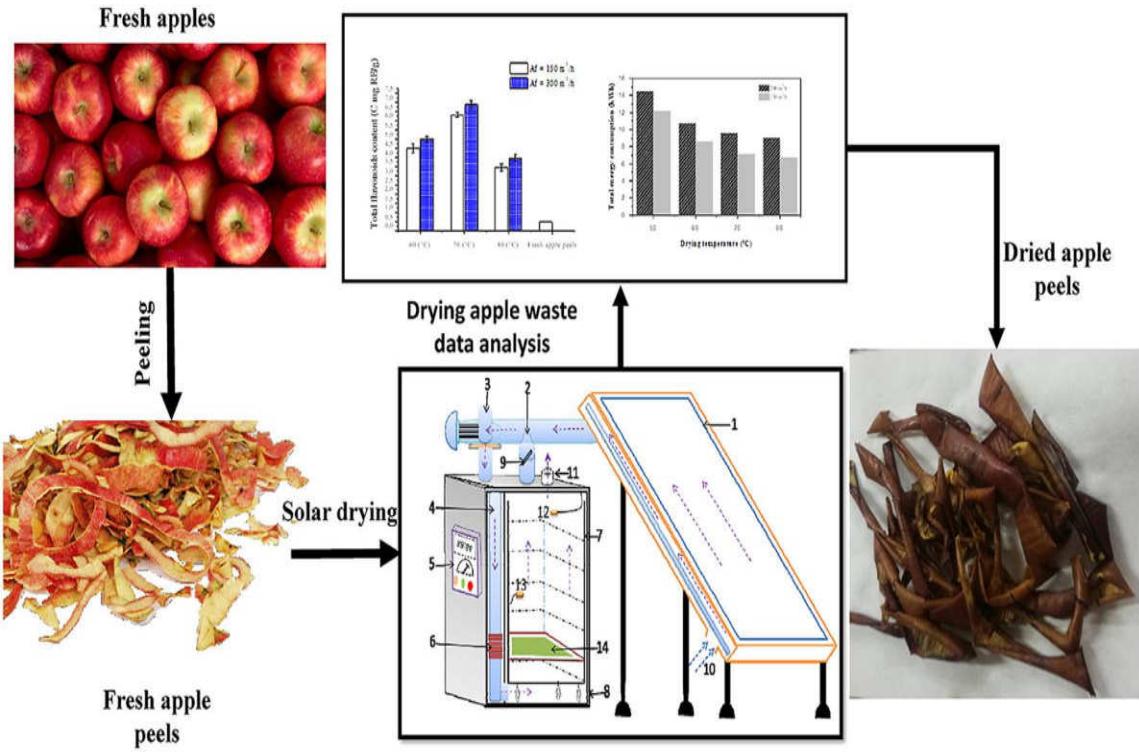


Table 1

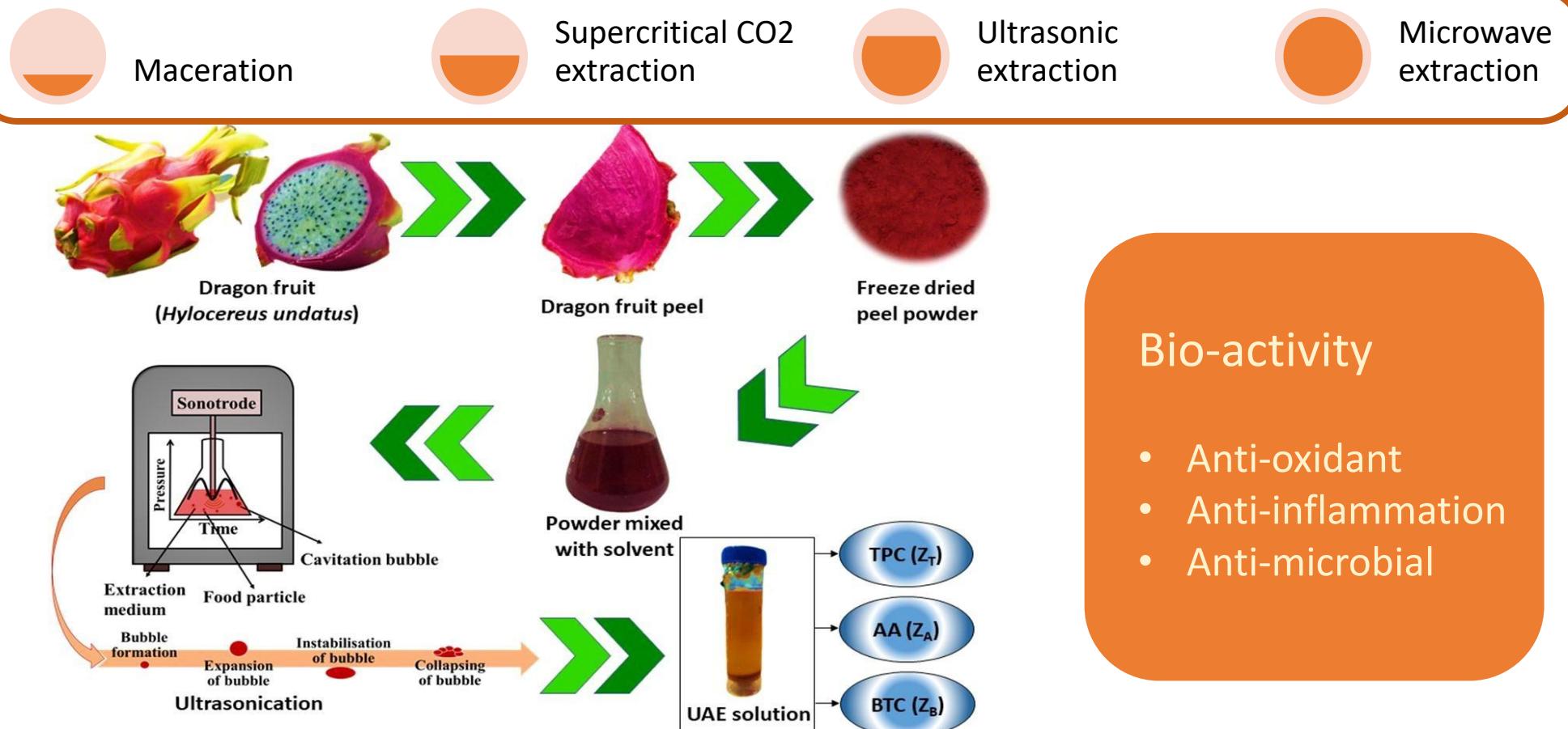
Thermal inhibition of microorganisms in eggshell.



Eggshell sample	Total plate count (CFU/g)	Yeast and mold (CFU/g)	Salmonella sp. (per 25 g)	Escherichia coli (MPN/g)
Fresh	$3.3 \pm 0.2 \times 10^7$	$2.5 \pm 0.3 \times 10^3$	Detected	1100
Sterilized at 121 °C for 15 min	<10 est.	<10 est.	Not detected	<3
Pasteurized at 95 °C for 15 min	90 est.	<10 est.	Not detected	<3
Pasteurized at 95 °C for 30 min	20 est.	<10 est.	Not detected	<3
Pasteurized at 95 °C for 45 min	10 est.	<10 est.	Not detected	<3
Pasteurized at 95 °C for 60 min	<10 est.	<10 est.	Not detected	<3

Note: est. = estimated, because the number of microbial counts was less than 25 CFU per plate for each dilution.

Source: Therdthai et al. (2023)

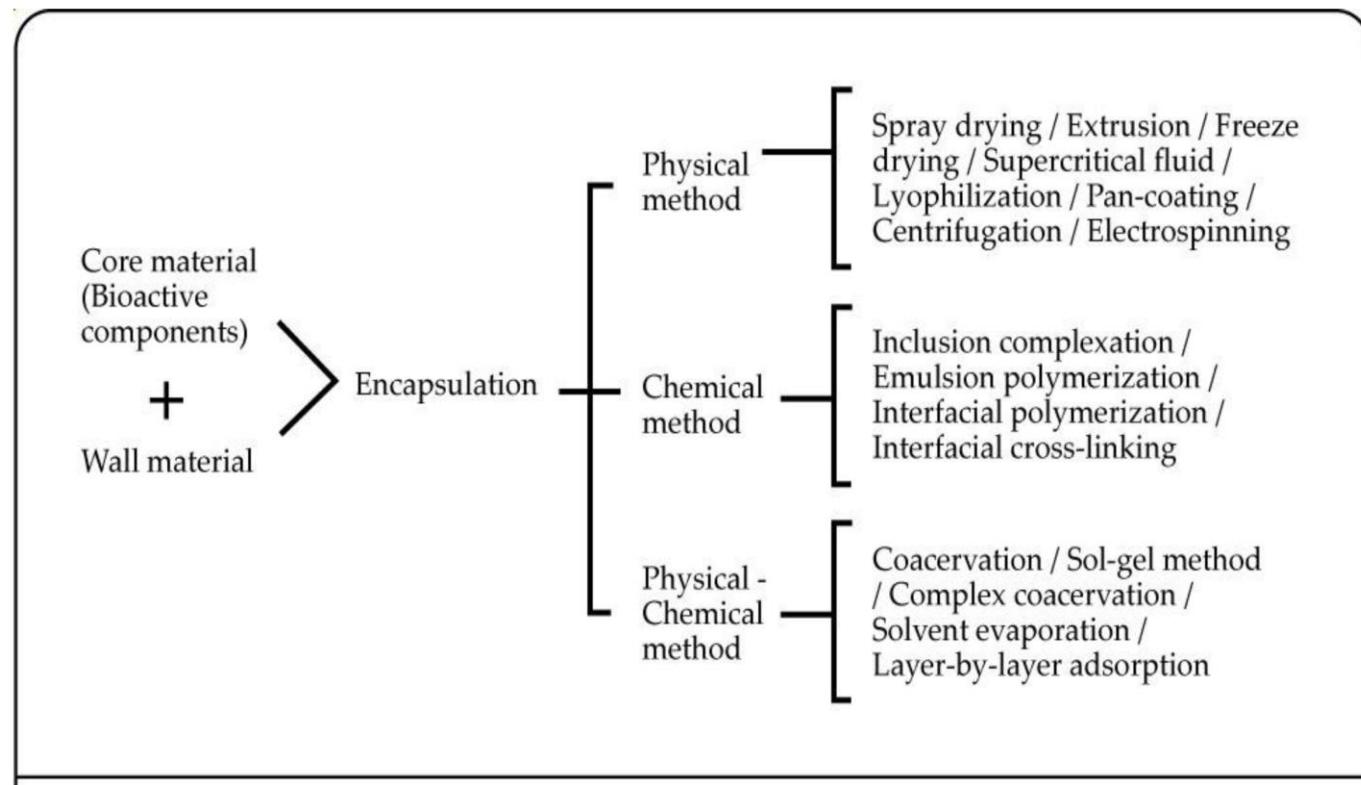
Drying


Drying for water removal and extending the shelf life

Source: Moussaoui et al. (2021)

Extraction

Extraction for bio-active compounds



Bio-activity

- Anti-oxidant
- Anti-inflammation
- Anti-microbial

Encapsulation

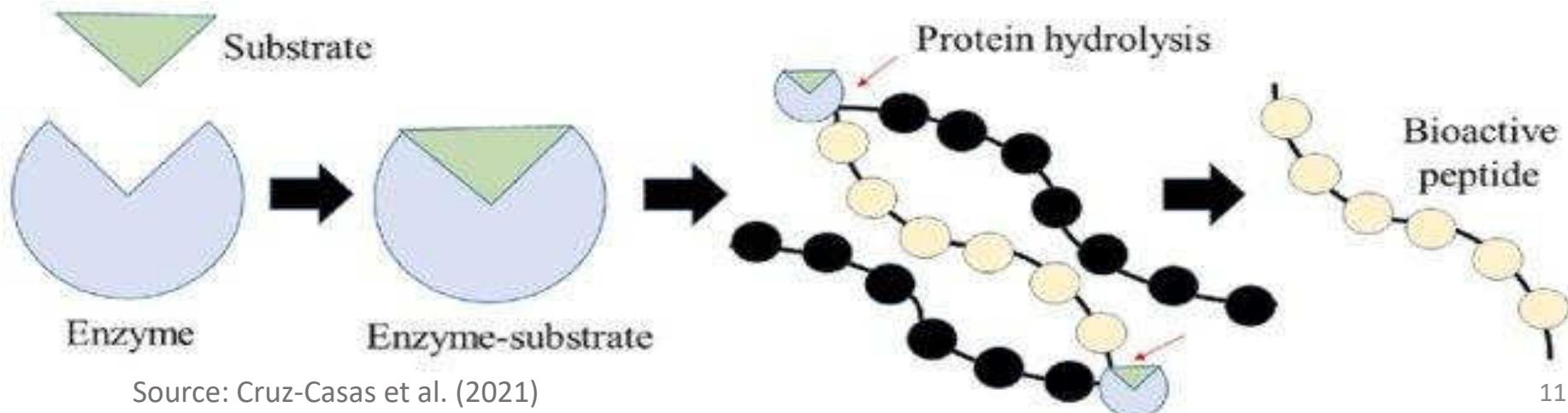
Encapsulation for protection and controlling the release

<https://www.greenagribio.com/news/pet-food-ingredient-supplier-wet-dry-nutrition-solutions.html>

Hydrolysis

Hydrolysis for improving the functional, nutritional, and physiological properties

Limited hydrolysis


- Hydrolysate with functional properties such as gelling, emulsion, foaming capacity, and stability.

Intermediate hydrolysis

- Hydrolysate with organoleptic properties such as flavoring, texturing agents.

Extensive hydrolysis

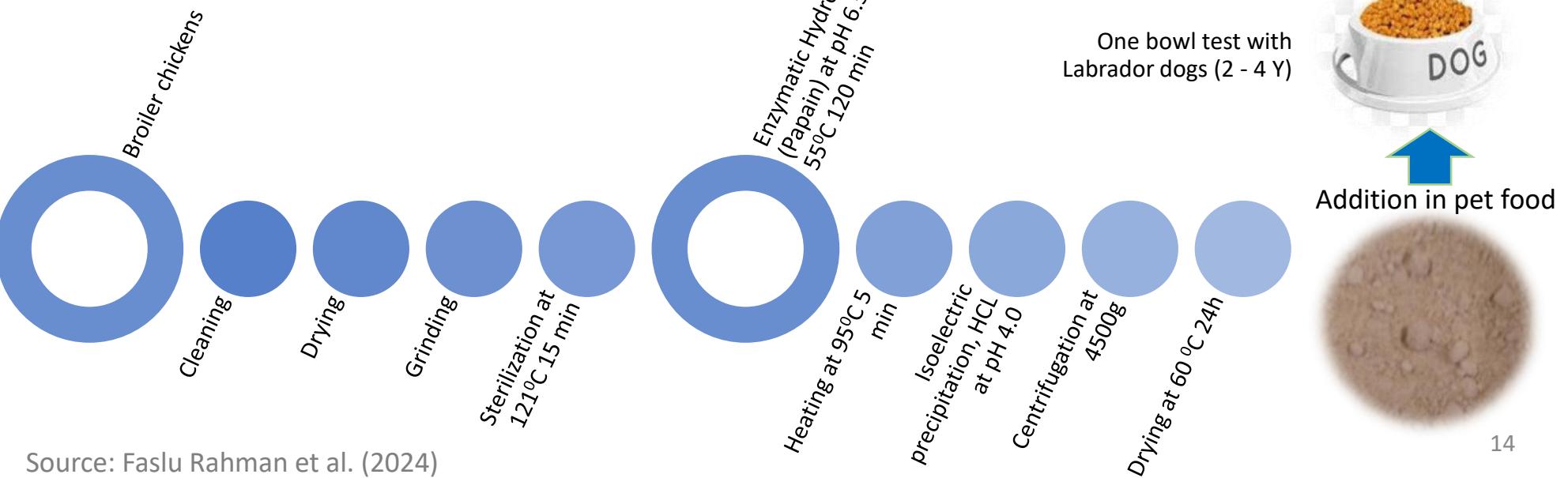
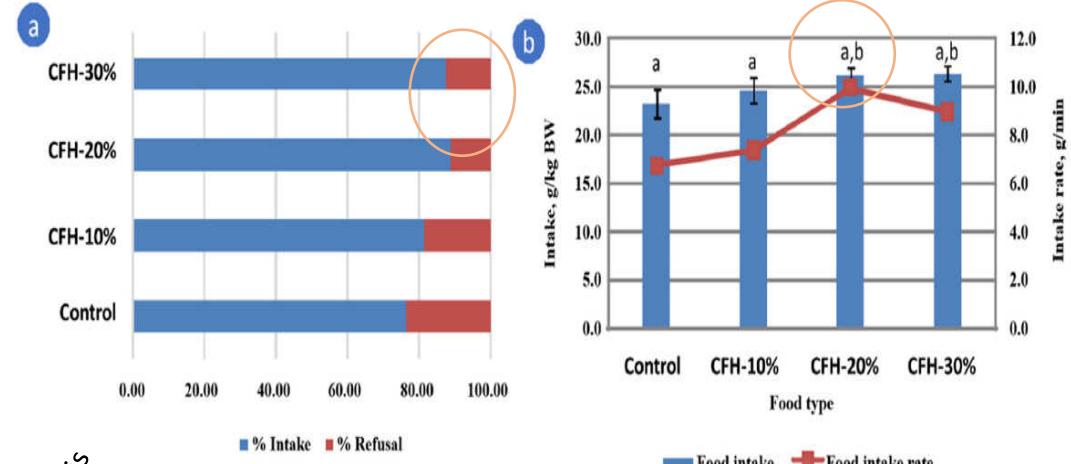
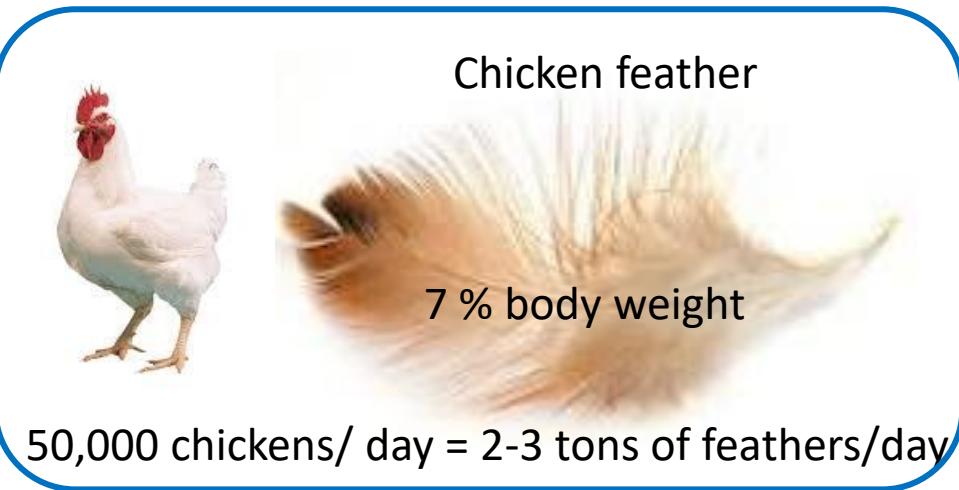
- Bio-active compounds with unique physiological properties for supplement.

Innovations in Pet Food

The majority of granted patents relating to pet food innovation are from South Korea, China, and the US.

Despite economic pressures and rising prices, 32% US pet owners are highly interested in treats or toppers that promise functional health benefits.

Innovations in Sustainability




- Claim for “Environment”

Source: Sparacino et al. (2025)

Superior code	ID	Sub-code	Description of sustainability Sub-code
Environment	18	Reducing ingredient footprints	Use of local products or ingredients with low footprints, short supply chains or from Km 0 sources.
	1	Water saving	Water conservation, making irrigation systems efficient, improving water stewarding and water quality with a focus on preserving water resources.
	9	Energy efficiency	Optimising energy usage. Preference for renewable energy sources vs fossil fuels.
	3	Reducing missions	Everything related to CO ₂ emissions. Reductions in pollutant emissions as a future goal or in the short term.
	2	Soil preservation	Measures to protect soils, cropping systems that respect the life-forms present in the soil and the need for rest periods from cultivation to allow for soil restoration.
	10	Minimizing waste	Reducing waste in the supply chain, reducing the use of packaging materials.
	7	Recycling systems	The use of recycling systems in either the packaging or the production phase.
	5	Packaging	The sustainability of packaging materials and the use of organic or sustainable materials.
	19	Organic product lines	Organic product lines, organic brands, raw materials from organic farming.
	15	Low chemical use	Reduction of chemicals and pesticides.

Innovations in Sustainability

Innovations in Sustainability

Table 3

Physicochemical characteristics and proximate composition of control and standardised pet foods, standard recommendations of pet food for adult maintenance.

Parameter	Control	CFH-20	NRC	AAFCO
Moisture (%)	4.71±0.18 ^a	4.70±0.15 ^a	6–10	
Dry matter (%)	95.39±0.18 ^a	95.40±0.15 ^a	90–94	
Crude Protein (%)	20.07±0.18 ^a	21.09±0.22 ^b	16–30	18
Crude Fat (%)	7.60±0.14 ^a	8.01±0.20 ^b	7–20	5.5
Ash (%)	5.07±0.14 ^a	5.00±0.07 ^a		
Crude fibre (%)	3.71±0.10 ^a	3.87±0.15 ^a		
NFE (%)	58.60±0.26 ^a	57.31±0.29 ^b		
Total carbohydrate (%)	47.96	44.80	41–70	
GE (Kcal/kg)	4426.8 ±0.51 ^a	4464.1 ±1.04 ^b	2800–4050 [#]	
Calcium (%)	1.67±0.05 ^a	1.63±0.05 ^a		0.5
Phosphorus (%)	1.31±0.01 ^a	1.29±0.01 ^a		0.4
Ca:P	1.29:1	1.24:1		1:1–1:2

NFE- Nitrogen Free Extract, GE - Gross Energy, CFH-20 – Selected pet food containing 20 % protein replaced by feather hydrolysate, NRC- National Research Council recommendations on adult dog food, AAFCO- Association of American Feed Control Officials recommendations on adult dog food. [#] Metabolisable energy.

Source: Faslu Rahman et al. (2024)

Two bowls test with Labrador dogs (2 - 4 Y)

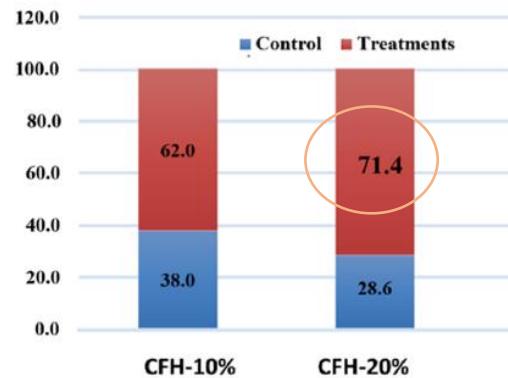
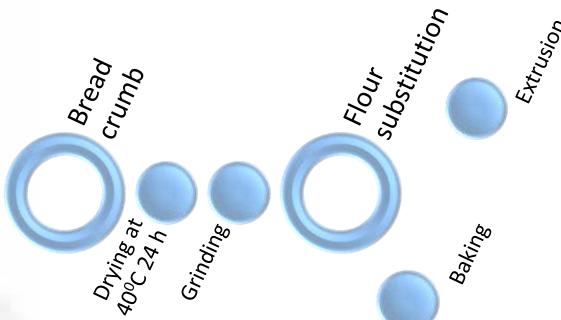


Table 4

Water activity, Instrumental colour analysis, cooking yield, and spoilage indices of control and selected pet foods.

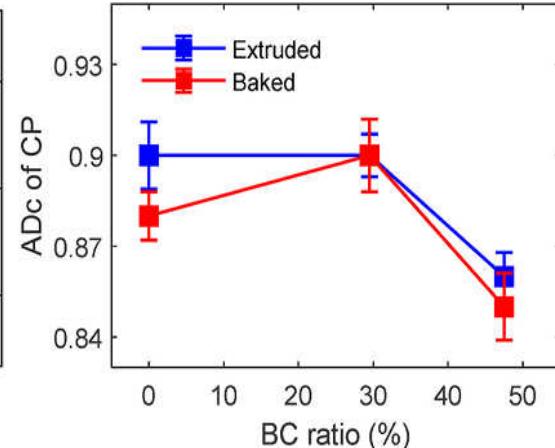
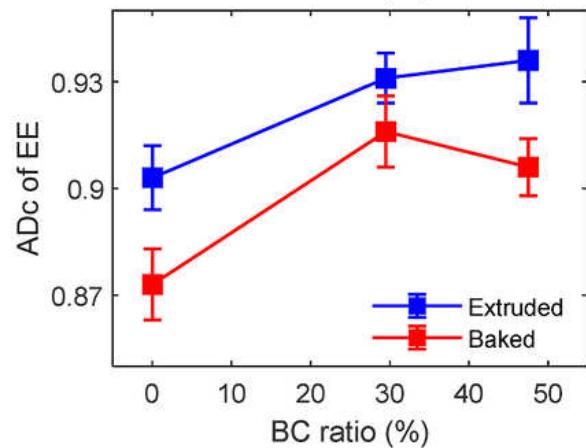

Parameter	Control	20 % CFH- Pet food
a_w (Water Activity)	0.52±0.01 ^a	0.50±0.01 ^a
L^*	24.64±0.62 ^a	24.01±0.52 ^a
a^*	5.96±0.19 ^a	5.56±0.16 ^a
b^*	9.03±0.19 ^a	7.33±0.18 ^b
Cooking Yield (%)	91.32±0.17 ^a	92.54±0.26 ^b
Free Fatty Acids (% oleic acid)	0.35±0.01 ^a	0.30±0.01 ^b
TBARS (mg Melonaldehyde/kg)	0.69±0.07 ^a	0.80±0.48 ^a
Tyrosine Value (mg/100 g)	8.14±1.0 ^a	10.37±0.16 ^b

Mean±S.E with different superscripts in the same row differ significantly ($p<0.05$), a_w - Water activity, L^* - Lightness, a^* - redness, b^* - yellowness TBARS- Thiobarbituric acid reactive substances. ^a, ^b mean values within column with different superscripts are significantly different ($P<0.05$).

Innovations in Sustainability

Bread crumb

12.1% protein
64.6% carbohydrates

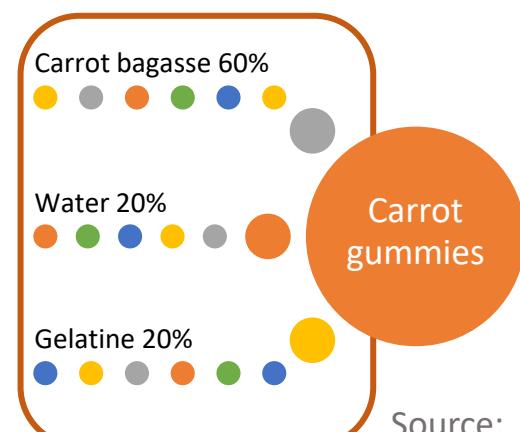


Table 1

Ingredients of the experimental diets.

Ingredients g/100 g	F1	F2	F3
Rice	21.5	12.0	10.0
Maize	21.0	12.0	6.0
wheat	21.0	11.0	0.0
BC	0.0	29.5	47.5
Beet pulp	3.0	4.0	5.0
Poultry meal	22.0	22.0	22.0
Poultry fat	4.0	4.0	4.0
CGM	5.0	3.0	3.0
Calcium Carbonate	0.8	0.8	0.8
Potassium Chloride	0.4	0.4	0.4
Sodium Chloride	0.4	0.4	0.4
Dicalcium Phosphate	0.9	0.9	0.9
GE (MJ/kg) as tested	19.1	19.4	19.6

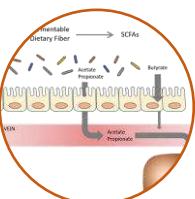
Abbreviations: F1, F2, F3: diet formulations, BC: Bread crumbs obtained from regular white bread, CGM: Corn gluten meal, GE: Gross energy.

Source: Mevliyaogullari et al. (2023)


Apparent digestibility coefficients (ADc) of extruded (20% feed moisture) and baked (40% feed moisture) products with varying BC ratios.

Innovations in Sustainability

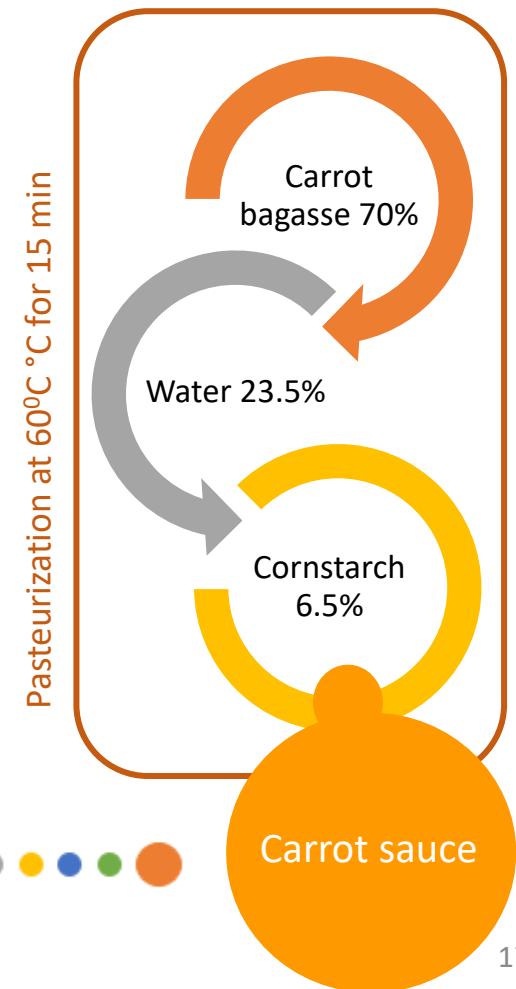
25–30 % of carrot residues are generated during Processing.


2.74 g/100 g for total fiber
3.68 mg/100 g for carotenoid content

Source: Londono Valencia et al. (2025)

Pectin-rich fiber source:
Enhances digestive health

Increase fecal short-chain fatty acids, particularly acetate. A crucial role in gut health and metabolic regulation.



High carotenoid content in carrots provides antioxidant properties. Contribution to immune system support and well-being

68% dog acceptance (n=90)

91% dog acceptance (n=90)

Innovations in Sustainability

Raw Materials from Food Waste:
Eggshells

References:

- Therdthai, N., Soontrunnarudrungsri, A. and Khotchai, W. 2023. Modified eggshell powder using thermal treatment and its application in Ca-fortified dog biscuits. *Heliyon*. e13093. <https://doi.org/10.1016/j.heliyon.2023.e13093>
- นันทawan เทrodthai, อุมา สุนทรนนท์สี และ วัลย์ลักษณ์ โคตรชัย. 2566. ผลิตภัณฑ์บิสกิตโปรดีนสูงเสริมแคลเซียมสำหรับสุนัข อนุสิทธิบัตร เลขที่คำขอ 2303003181
- โครงการวิจัย ระบบการดัดแปลงเปลือกไข่จากโรงฟักไข่แบบครบวงจร เพื่อลดปริมาณขยะภาคการเกษตร และการสร้างมูลค่าสินค้าเกษตรและอุตสาหกรรมเกษตร โดย การสนับสนุนจาก สำนักงานการวิจัยแห่งชาติ (วช) ประจำปีงบประมาณ 2564

“BiskyBone”

Ca-fortified Dog Biscuits with Eggshells

Associate Professor Nantawan Therdthai and Assistant Professor Aussama Soontrunnarudrungsri

Department of Product Development, Faculty of Agro-Industry, Kasetsart University

This pet treat contains:

- High protein
- High calcium
- Good balance of Ca:P
- Natural calcium from eggshells
- Ideal for dogs especially small breeds

TRL4

Innovations in Sustainability

Commercial products

Nutrition Facts

Per 100.00g

Crude Protein ≥ 13.50 %

Crude Fat ≥ 8.50 %

Crude Fibre ≤ 6.00 %

Crude Ash ≤ 8.50 %

Moisture ≤ 32.00 %

Energy (kcal) 330.00 kcal

Ingredients On Pack Standard form

seafood (tuna, fish meal), breadcrumbs, wheat flour, other sugars, vegetable oil, silervine powder (gall fruit), seasoning, glycerin, dietary fibre (cellulose), sorbitol, minerals (sodium), preservative (sorbic acid, sodium dehydroacetate), sodium polyphosphate, taurine

Nutrition Facts

Per 1.00kg

Crude Protein Min 26.00 %

Crude Fat Min 10.00 %

Crude Fiber Max 8.00 %

Moisture Max 10.00 %

Linoleic Acid Min 1.30 %

Calcium Min 1.20 %

Phosphorus Min 1.00 %

Potassium Min 0.60 %

Manganese Min 15.00 mg

Zinc Min 150.00 mg

Selenium Min 0.35 mg

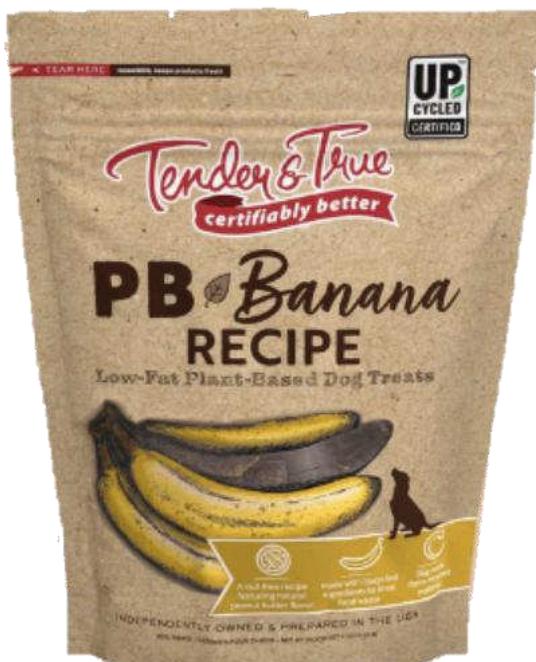
Vitamin A Min 5000.00 IU/UI

Vitamin D Min 500.00 IU/UI

Vitamin E Min 100.00 IU/UI

Niacin Min 15.00 mg

Omega-6 Fatty Acids Min 1.40 %


Omega-3 Fatty Acids Min 0.20 %

Metabolizable Energy... 3189.00 kc

Innovations in Sustainability

Claim: Plant Based + Banana Low-Fat Dog Jerky Treats

Upcycled Beet, Sunflower meal

Upcycled ingredients

Claim: Fiber-rich for digestion support

Innovations in Sustainability

Thin Sliced Beef Tongue for Dog

Thin Sliced Chicken Cockscomb for Dog

Claim: 100% Natural

Natural chews are made from animal parts that would normally go to waste, and upcycling these parts as treats for pets.

Pig's Ears

Nutrition Facts

Per 100.00g
Crude Proteins ≥ 44.00 %
Crude Fat ≥ 12.00 %
Crude Fibre ≤ 1.00 %
Crude Ashes ≤ 4.00 %
Moisture ≤ 25.00 %
Energy (kcal) 410.00 kcal

Nutrition Facts

Per 100.00g
Crude Protein ≥ 50.00 %
Crude Fat ≥ 13.50 %
Crude Fibre ≤ 2.00 %
Crude Ashes ≤ 4.00 %
Moisture ≤ 25.00 %
Energy (kcal) 410.00 kcal

Nutrition Facts

Per Serving
Crude Protein 65.10 %
Fat 22.40 %

Cow's Pizzles

Innovations in Sustainability

100% all natural and made from the rice husk, an agricultural byproduct, that is usually burned as a waste generating air pollution

100% all natural and made from biodegradable cassava

100% recycled paper
40% transport
emissions reduction

Made from 95% post-consumer recycled (PCR) paper

Personal Care Products

Innovations in Sustainability

KASETSART
UNIVERSITY

KNOWLEDGE
OF THE LAND

Personal Care Products

Made of 65% post-consumer recycled (PCR) plastics, giving a second life to more than 2.2 million kilograms of waste plastic every year.

The dispenser is made from wheat straw.

Poo bag is made from 100% corn starch

Benefits of Upcycled Ingredients

Reduction in waste and emissions of CO₂

Adopt sustainable and alternative ingredients

Appeal to environmentally conscious

Economic efficiency for manufacturers

Economic efficiency for manufacturers

- Cost breakdown of pet food

Ingredient Type	Average Cost per Ton (USD)
Chicken Meal	\$1,200
Fish Meal	\$1,500
Organic Meat	\$2,500
Specialty Additives	\$5,000
Standard Grains	\$300–\$400
Vegetables & Carbohydrates	\$800–\$1,600

Protein content significantly influences the retail price of pet food.

Wet foods, which often contain higher amounts of animal-based proteins, are more expensive than dry kibble.

Utilizing animal by-products like chicken liver and pork bones can be an economical way to provide essential nutrients. Cooking these ingredients ensures safety and digestibility for pets.

Economic efficiency for manufacturers

- Protein sources

Protein Source	Approximate Cost (per kg)
Fish Meal (65% Protein)	\$0.45–\$0.50
Poultry By-Product Meal	\$1.00–\$1.50
Beef Meal	\$1.50–\$2.50
Lamb Meal	\$2.00–\$3.00
Pork Meal	\$1.80–\$2.80
Soy Protein Concentrate	\$1.00–\$1.50
Corn Gluten Meal	\$0.32
Pea Protein	\$2.00–\$3.00
Rice Protein	\$2.50–\$4.00
Hemp Protein	\$3.00–\$5.00
Cultivated Meat (Mouse)	\$4.40–\$5.50
Single-Cell Proteins (SCPs)	High

Economic efficiency for manufacturers

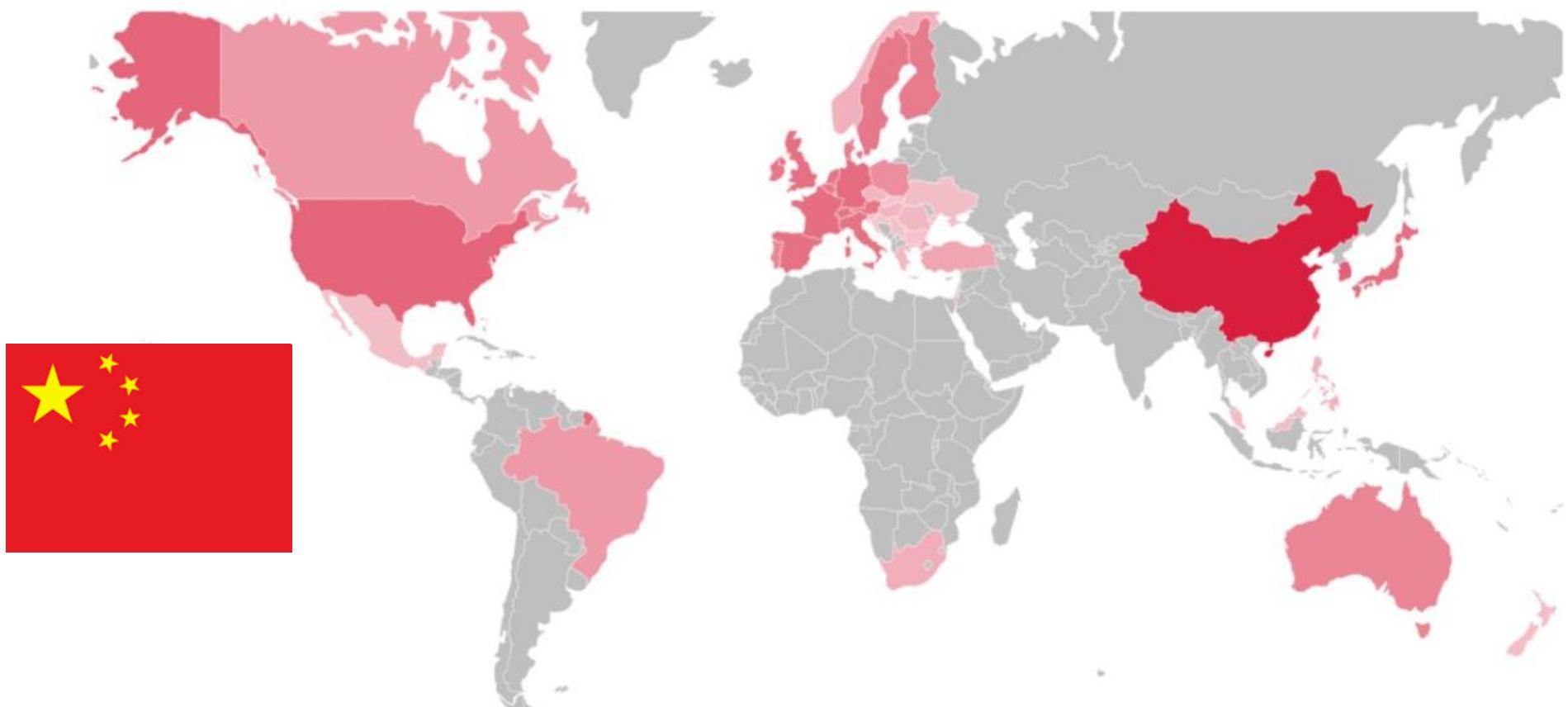
Protein Source	Digestibility	Nutritional Value
Animal-Based	High	Rich in essential nutrients
Plant-Based	Moderate	Lower in certain nutrients
Novel Proteins	Emerging	Variable; potential for fortification

Sustainability in Packaging

During the past two decades, sustainability and sustainable packaging have continually shifted course.

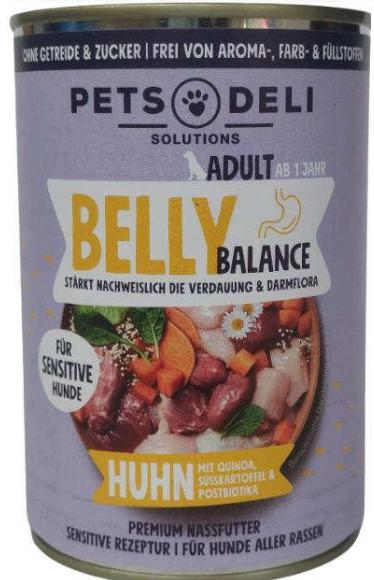
- Circularity
- Recyclability
- Recycled content
- Mono-materials
- LCA (Life Cycle Analysis)
- ESG (Environment, Social, and Governance)
- EPR (Extended Producer Responsibility)
- SDG (Sustainable Development Goals)
- Total carbon footprint measurement

Packaging in any format, with any material, must be responsible for the environment throughout its lifecycle.


In Thailand, younger consumers prefer packaging that is visually appealing and tells a story about the brand.

In terms of economic consideration, packaging that offers additional value, such as durability or multipurpose use, is appealing to consumers who are cautious with their spending.

Sustainability in Packaging


China leads granted patents relating to eco-friendly* packaging

The leading countries for granted patents are China (with 29% of all global patent grants), South Korea (9%), the US (7%), Germany (5%) and France (5%).

Sustainability in Packaging

Recyclability/ Composability / Reduction

100% recyclable

100% recyclable

Use less energy to recycle VS a can
80% lower global warming potential VS
a can

Eliminate plastic and now use a recyclable
cardboard packaging

Science-backed
ingredients

Sustainability in Packaging

Composability / Reduction/ Recyclability

The package is produced from sugarcane, a raw material of renewable source that collaborates to reduce of emission of greenhouse gases.

Packaging made of 60% less plastic

Mono-material pouches with reduced carbon footprint compared to the multi-layer packaging

Challenges

- Safety concerns:

- Screening the food waste is important to exclude food waste that can be toxic to pets.
- Contamination of pathogen
- Contamination of heavy metals

Challenges

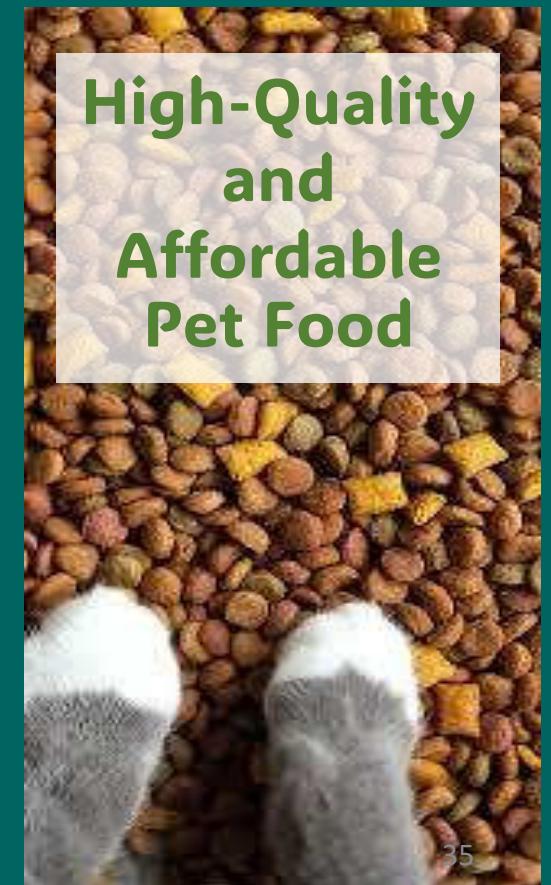
- Safety concerns:
 - Processing Standards: Pet food must be produced under sanitary conditions, with appropriate processing to inactivate
 - Safety and quality testing is necessary to ensure that the food waste-derived ingredients are safe for animal consumption and meet the required nutritional standards.

Challenges

Environmental Labels

Ethical Labels

- Pet food labels must be truthful and not misleading, with specific requirements for certain ingredients.
- Public perception of "by-products" and "waste."


The Association of American Feed Control Officials (AAFCO) defines **by-products** as
“Secondary products produced in addition to the principal product”

- Communication has become a powerful tool to demonstrate a company's commitment to sustainability issues and provide added value to all stakeholders.

Challenges

Economic uncertainty/ Inflationary environment

- Economic uncertainty, coupled with rising pet food prices, has led many pet owners to opt for budget-friendly brands that may compromise on nutrition.
- 42% of US pet owners have considered switching to a lower-priced pet food brand to save money, while 65% are interested in finding ways to reduce pet care spending to save money.
- 65% of Canadian pet owners agree that the price of pet food has an impact on their choice of pet food and treats.
- Only 29% of Thai pet owners usually choose the more-expensive pet food product for its value (eg added benefits, high quality).

Compliance for Utilizing Food Waste in Pet Food Production

- พระราชบัญญัติอาหารสัตว์ พ.ศ. 2558 กรมปศุสัตว์ <https://legal.dld.go.th/P152.html>
- ประกาศกระทรวงเกษตรและสหกรณ์ เรื่องกำหนดวัตถุหรือวัตถุดิบที่ใช้ผสมอาหารสัตว์ควบคุม พ.ศ. 2560
- ประกาศกระทรวงเกษตรและสหกรณ์ เรื่องมาตรฐานอาหารสัตว์ควบคุมกำหนดรายละเอียดคุณภาพ
- มาตรฐานผลิตภัณฑ์อุตสาหกรรม (มอก.) อาหารสัตว์เลี้ยง
- มาตรฐานวัตถุดิบอาหารสัตว์
- GMP/HACCP** สำหรับโรงงานผลิตอาหารสัตว์
รับรองโดยกรมปศุสัตว์

Compliance Steps for Utilizing Food Waste in Pet Food Production

Country	Regulation	Description
US	Food and Drug Administration (FDA) under the Federal Food, Drug, and Cosmetic Act.	Safety, sanitary conditions, and labeling
	The American Association of Feed Control Officials (AAFCO)	Guidelines on ingredient definitions and nutritional adequacy
EU	Feeding Stuffs Act	All ingredients for pet food must be fit for human consumption. Thus, pet food containing by-products must be labeled as "Not for human consumption".
UK	Animal and Plant Health Agency (APHA) under the Animal By-Products (ABP) Regulations	Allow the use of animal by-products in pet food, provided they are derived from animals fit for human consumption and are processed to inactivate pathogens.
Canada	Canadian Food Inspection Agency (CFIA) regulates pet food under the Feeds Regulations	Pet food is safe and meets nutritional standards.
Japan	Legislation enacted in 2007	Facilitate the use of food waste in pet food production, provided it meets safety and quality standards

Future Outlook

The company can focus on...

- Producers should also consider using advanced processing techniques and technologies that deliver personalized recommendations addressing pets' specific dietary needs and health concerns.
- Lower ingredient costs and product prices will help consumers overcome price barriers.

Summary

To turn waste into premium pet food ingredients.....

- P** – Potential in Waste
- A** – Actionable Process
- W** – Win-Win Solution
- S** – Sustainability Goal

REFERENCES

- Faslu Rahman, C.K., Kumar, R.R., Chand, S., Pattanaik, A.K., Raypa,P., Tarafdar, A., Mendiratta,S.K., and Ajay, A. (2024) Keratin-based pet food produced through proteolytic hydrolysis of chicken feather: Characterisation and palatability study. *Process Biochemistry*, 146: 214-224. <https://doi.org/10.1016/j.procbio.2024.07.032>.
- Londoño Valencia, M., Camilo Henao-Rojas, J., Salazar Hoyos, L.A. (2025) Carrot-based functional pet food: A comprehensive study on texture, nutritional value, microbiology, and canine acceptance. *Applied Food Research*, 5(1) 100845 <https://doi.org/10.1016/j.afres.2025.100845>.
- Mevliyaoğulları, E., Karslı, M.A., and Mert, B. (2023) Utilizing surplus bread as an ingredient in dog food: Evaluating baking and extrusion processing on physicochemical properties and in vitro digestibility performance. *Journal of Cereal Science*, 113: 103741, <https://doi.org/10.1016/j.jcs.2023.103741>.
- Sparacino, A., Mastromonaco, G., Maria Merlino, V., Borra, D., and Blanc, S. (2025) How do pet food companies communicate sustainability practices on their websites? *Environmental Challenges*, 19: 101154. <https://doi.org/10.1016/j.envc.2025.101154>.
- Therdthai, N., Soontrunnarudrungsri, A., and Khotchai, W. (2023). Modified eggshell powder using thermal treatment and its application in Ca-fortified dog biscuits. *Heliyon*. e13093. <https://doi.org/10.1016/j.heliyon.2023.e13093>
- GNPD database (<https://www.gnpd.com/>)

